Bachelor Project or Master Thesis Project

Optical properties retrieved from OCT A-scans

Supervisors
Peter E. Andersen, Senior Researcher, DTU Fotonik, +4546774555, peta@fotonik.dtu.dk
Dominik Marti, Postdoc, DTU Fotonik, +4546774568, domar@fotonik.dtu.dk

Project description
Measuring the optical properties of a substance is surprisingly difficult. In the context of healthcare, the absorption coefficient μ_a, the scattering coefficient μ_s, and the anisotropy factor g of tissue could potentially be used as biomarkers, i.e., they could serve as indicators for the presence or even the state of abnormalities.

OCT, an optical ranging technique, is sensitive to those optical properties, however, retrieving μ_s and g from OCT measurements is a yet untackled question. The theoretical framework exists, and this project is about measuring samples of different, known optical properties using a research grade OCT system and applying the existing model to those measurements, to show that extraction of optical properties from simple OCT scans is indeed feasible.

Prerequisites
- Hands-on experimental experience
- Experience in theoretical modelling
- Knowledge on optics
- Knowledge on OCT

Practical details
The lab is located at Risø Campus.

OCT signal of intralipid phantom with difference concentrations

Attenuation coefficient of 1% and 10% intralipid-agarose phantom

Image reproduced from doi:10.1117/12.2038913