Projekt

Transcriptomic characterization of in vivo-like model of chronic infection

Udbyder

Vejleder

Sted

København og omegn

The physiology of bacteria in chronic infections, such as cystic fibrosis and non-healing wounds is far from
being well-characterized.

Our understanding of bacterial behavior and functioning during human infections remains superficial since most in vitro experiments fail to mimic the complex host environment.

Therefore, it is important to determine what differentiates current model systems from clinical conditions in order to develop in vitro models to accurately simulate central aspects of the host environment and to better understand the biology of infections.

Recently, it has been shown that growing bacteria in alginate beads can mimic central aspects of in vivo
conditions, such as diffusion-limited bacterial growth forming dense bacterial aggregates.

These aggregates are similar in size and morphology to in vivo aggregates observed ex vivo in cystic fibrosis lungs and chronic wounds. Though this model appears to closely resemble what is observed in vivo, the resemblance to true chronic infection on a transcriptional level has yet to be characterized.
The master project will be focused on comparing the transcriptome of bacterial aggregates grown in the
alginate bead model under different conditions to that of bacteria in infected human tissue using RNAsequencing.

The goal is to identify bacterial genes characteristic of a chronic infection by the help of machine learning and develop the alginate bead model to recreate the transcriptomic environment of bacteria during infection.

The student should be familiar with basic laboratory techniques, such as pipetting and reagent preparation.

Some prior experience with programming and writing scripts (R, Python, and/or Unix) would also be
beneficial, but not a requirement.

Allowed no of students per report: 1-2

I samarbejde med

University of Copenhagen, Prof. Thomas Bjarnsholt (tbjarnsholt@sund.ku.dk)

Forudsætninger

Basic laboratory techniques (pipetting and reagent preparation). Some prior experience with programming and writing scripts (R, Python, and/or Unix) would be beneficial, but not a requirement.

Søg i opslag
Kontakt

Virksomhed/organisation

DTU Sundhedsteknologi

Navn

Jens E. Wilhjelm

Stilling

Gruppeleder, Professor

Mail

jwil@dtu.dk

Vejleder-info

Kandidatuddannelsen i Medicin og Teknologi

Vejleder

Jens E. Wilhjelm

Medvejledere

Jens E. Wilhjelm

Type

Kandidatspeciale

OM DTU

DTU er et teknisk eliteuniversitet med international rækkevidde og standard. Vores mission er at udvikle og nyttiggøre naturvidenskab og teknisk videnskab til gavn for samfundet. 10.000 studerende uddanner sig her til fremtiden, og 5.700 medarbejdere har hver dag fokus på uddannelse, forskning, myndighedsrådgivning og innovation, som bidrager til øget vækst og velfærd.

Find os her

Anker Engelunds Vej 1
Bygning 101A
2800 Kgs. Lyngby


45 25 25 25

dtu@dtu.dk

CVR-nr. 30 06 09 46

Liste over EAN Numre

Job på DTU

Se alle jobs
 

loading..