Projekt

Storing Excess Energy in Fuel Form with Electrolyzer

Udbyder

Vejleder

Sted

København og omegn

In a future energy system based primarily on renewable energy sources (e.g. wind and sun) electrolysis is expected to play a key role. Fuel generated by electrolysis can store power from the renewable energy sources when electricity supply exceeds demand. The generated fuel can then be used to produce electricity when demand is high. This project aims a designing a ‘dual-mode’ Solid Oxide Cell systems which can operate efficiently in both fuel cell and electrolysis mode.

In a future energy system which would be primarily based on renewable energy sources (e.g. wind and sun) electrolysis is expected to play a key role. Hydrogen based fuel generated by electrolysis can store power from the renewable energy sources when electricity supply exceeds demand. Solid Oxide Fuel Cell (SOFC) stacks and systems which have recently proven to be the most power effective of all existing electrolysis technologies and hence positioned to play a central role in the future storage and conversion of renewable energy. A unique feature of Solid Oxide Cells is that the same stack can operate in both fuel cell and electrolysis mode. In a future energy system this allows the same stacks to be used for storing energy (electrolysis mode) when electricity supply exceeds demand and for generating electricity (fuel cell mode) when electricity demand exceeds supply. However, the stack is only one element of a fuel cell/electrolysis system, other key elements like heat exchangers, pumps and off gas burners actually accounts for most of the system costs. This project aims a designing a ‘dual-mode’ Solid Oxide Cell systems which can operate efficiently in both fuel cell and electrolysis mode. The ambition is a far as possible to use the same components in both modes to achieve cost-effective and compact dual-mode systems for the future energy production and storage. The project will include both modelling and if needed some experimental work. A model will be developed for dual mode Solid Oxide Cell systems and this model will be used to optimise power efficiency and cost for different system lay-outs.

Søg i opslag
Kontakt

Virksomhed/organisation

DTU Mekanik

Navn

Marvin Mikael Rokni

Stilling

Lektor

Mail

mr@mek.dtu.dk

Vejleder-info

Kandidatuddannelsen i Bæredygtig Energi

Vejleder

Marvin Mikael Rokni

ECTS-point

30

Type

Kandidatspeciale

OM DTU

DTU er et teknisk eliteuniversitet med international rækkevidde og standard. Vores mission er at udvikle og nyttiggøre naturvidenskab og teknisk videnskab til gavn for samfundet. 10.000 studerende uddanner sig her til fremtiden, og 5.700 medarbejdere har hver dag fokus på uddannelse, forskning, myndighedsrådgivning og innovation, som bidrager til øget vækst og velfærd.

Find os her

Anker Engelunds Vej 1
Bygning 101A
2800 Kgs. Lyngby


45 25 25 25

dtu@dtu.dk

CVR-nr. 30 06 09 46

Liste over EAN Numre

Job på DTU

Se alle jobs
 

loading..