Projekt

Improving deep learning for electron microscopy

Udbyder

Vejleder

Sted

København og omegn

Deep learning is the application of neural networks with many layers to machine learning problems. We expect that deep learning can be a game-changer for analyzing data from Transmission Electron Microscopy (TEM). It can automatize the analysis of large amounts of data, eliminate the bias of the person analysing the images, provide quantitative and statistical data, and even help extracting information that is normally difficult to get from TEM.

In a collaboration between the CAMD theory group at DTU Physics and the electron microscopists at DTU CEN/Danchip we have developed a method for training deep convolutional neural networks on simulated TEM images and applying them on real experimental data [1].  We have made our prototype software publicly available [2].

Unlike most image analysis problems, we are in the beneficial and quite unusual situation of having access to almost free training data, since high-resolution TEM images can be simulated reliably from atomic structures, including realistic noise and imperfections in the microscope optics.

The neural network architecture is inspired by the networks generally used for automated image analysis and segmentation.  However, the network architecture has almost not been optimized, nor has the training procedure.  We expect that the performance can be significantly enhanced by addressing this.

This project has two aspects, a BSc project will focus one one of them while a MSc will focus on both.

* To improve the neural network by optimizing the network architecture and the training algorithm, and by incorporating recent ideas from the litterature on image analysis and image segmentation.

* To turn the current collection of scripts and software snippets into a package that can realistically be used by an electron microscopist with no prior experience in machine learning.experience with 



Figure: The architecture of the neural network [1]. Information flows from left to right. The different-colored rectangles refer to the different architecture elements. Below the rectangles, the spatial and channel dimensions are given as height × width × number of channels (feature maps). The features are downsampled in an encoding path and upsampled through a decoding path in order to represent non-local information. Skip connections ensure that it is possible to retain the original spatial information. Although the size of the input images is shown as 256 × 256, this is not part of the network architecture, and the network can be used on images of any size.


References:

[1] J. Madsen et al.: A Deep Learning Approach to Identify Local Structures in Atomic-Resolution Transmission Electron Microscopy Images,  Adv. Theory Simul. 1, 1800037 (2018).  Preprint available at https://arxiv.org/abs/1802.03008


Forudsætninger

Prior knowledge of Python and neural networks. Some knowledge of solid state physics and/or electron microscopy is an advantage, but not required.

Søg i opslag
Kontakt

Virksomhed/organisation

DTU Fysik

Navn

Jakob Schiøtz

Stilling

Professor

Mail

schiotz@fysik.dtu.dk

Vejleder-info

Bachelor i Kunstig Intelligens og Data

Vejleder

Jakob Schiøtz

Medvejledere

Thomas Willum Hansen

ECTS-point

15 - 35

Type

Bachelorprojekt, Kandidatspeciale

Bachelor i General Engineering

Vejleder

Jakob Schiøtz

Medvejledere

Thomas Willum Hansen

ECTS-point

15 - 35

Type

Bachelorprojekt, Kandidatspeciale

Bachelor i Geofysik og Rumteknologi

Vejleder

Jakob Schiøtz

Medvejledere

Thomas Willum Hansen

ECTS-point

15 - 35

Type

Bachelorprojekt, Kandidatspeciale

Bachelor i Matematik og Teknologi

Vejleder

Jakob Schiøtz

Medvejledere

Thomas Willum Hansen

ECTS-point

15 - 35

Type

Bachelorprojekt, Kandidatspeciale

Bachelor i Fysik og Nanoteknologi

Vejleder

Jakob Schiøtz

Medvejledere

Thomas Willum Hansen

ECTS-point

15 - 35

Type

Bachelorprojekt, Kandidatspeciale

Kandidatuddannelsen i Anvendt Kemi

Vejleder

Jakob Schiøtz

Medvejledere

Thomas Willum Hansen

ECTS-point

15 - 35

Type

Bachelorprojekt, Kandidatspeciale

Kandidatuddannelsen i Informationsteknologi

Vejleder

Jakob Schiøtz

Medvejledere

Thomas Willum Hansen

ECTS-point

15 - 35

Type

Bachelorprojekt, Kandidatspeciale

Kandidatuddannelsen i Geofysik og Rumteknologi

Vejleder

Jakob Schiøtz

Medvejledere

Thomas Willum Hansen

ECTS-point

15 - 35

Type

Bachelorprojekt, Kandidatspeciale

Kandidatuddannelsen i Elektroteknologi

Vejleder

Jakob Schiøtz

Medvejledere

Thomas Willum Hansen

ECTS-point

15 - 35

Type

Bachelorprojekt, Kandidatspeciale

Kandidatuddannelsen i Matematisk Modellering og Computing

Vejleder

Jakob Schiøtz

Medvejledere

Thomas Willum Hansen

ECTS-point

15 - 35

Type

Bachelorprojekt, Kandidatspeciale

Kandidatuddannelsen i Fysik og Nanoteknologi

Vejleder

Jakob Schiøtz

Medvejledere

Thomas Willum Hansen

ECTS-point

15 - 35

Type

Bachelorprojekt, Kandidatspeciale

OM DTU

DTU er et teknisk eliteuniversitet med international rækkevidde og standard. Vores mission er at udvikle og nyttiggøre naturvidenskab og teknisk videnskab til gavn for samfundet. 10.000 studerende uddanner sig her til fremtiden, og 5.700 medarbejdere har hver dag fokus på uddannelse, forskning, myndighedsrådgivning og innovation, som bidrager til øget vækst og velfærd.

Find os her

Anker Engelunds Vej 1
Bygning 101A
2800 Kgs. Lyngby


45 25 25 25

dtu@dtu.dk

CVR-nr. 30 06 09 46

Liste over EAN Numre

Job på DTU

Se alle jobs
 

loading..