Projekt

Computational fluid dynamic (CFD) simulation of enzymatic hydrolysis of keratin waste material at high solids loading in a scraped surface bioreactor

Udbyder

Vejleder

Sted

København og omegn

The enzymatic hydrolysis of keratin waste biomass is a conversion process that employs microbial keratinases to decompose keratin-rich substrates. The soluble proteins, peptides and free amino acids released during the process are a viable alternative protein source to fish meal for aquaculture. It is desirable to perform the keratin degradation process at high solids loadings in order to maximize product titer and reduce process water, energy usage, and reactor size. However, high solids slurries are highly viscous by nature, and their hydrolysis poses a serious challenge in obtaining effective mixing and efficient heat transfer inside the bioreactor. Consequently, conventional stirred tank reactors with typical impeller configurations are not practical for this application because of high stirring speeds needed to mix the slurry and keep the solids suspended. Gravitational or free-fall horizontal mixing systems such as scraped surface slurry bioreactors have proven to offer several advantages over typical stirred tank reactors. The horizontal scraping action of the impellers in a free fall principle reactor requires very low rotation rates and, hence, much less power while preventing particle settling and local accumulation of reaction products, as well as ensuring better enzyme distribution. Moreover, the scraping action of the blades maintains a clear reactor surface and, thereby, improves heat transfer.

 

In this project, the student will develop a computational fluid dynamic (CFD) model which, in turn, will be used to gain insight into the mixing behavior of the particulate system within a horizontal scraped surface slurry reactor. In particular, while designing the reactor, knowledge of the local flow patterns will be fundamental in achieving more uniform mixing and therefore improved heat and mass transfer. The computational multiphase flow model developed will be used, in a following project, as the starting point for the construction of a laboratory unit.

 

We are looking for a highly motivated MSc. student in Biochemical engineering with the following skills:

- General knowledge in CFD or keen on learning CFD

- Good knowledge of transport phenomena

- Knowledge of rheological behavior of non-Newtonian fluids will be considered as a plus


Søg i opslag
Kontakt

Virksomhed/organisation

DTU Kemiteknik

Navn

Ulrich Krühne

Stilling

Lektor

Mail

ulkr@kt.dtu.dk

Vejleder-info

Kandidatuddannelsen i Anvendt Kemi

Vejleder

Ulrich Krühne

Medvejledere

Krist V. Gernaey, Ines Pereira Rosinha Grundtvig, Francesco Cristino Falco

ECTS-point

30 - 35

Type

Kandidatspeciale

Kandidatuddannelsen i Kemisk og Biokemisk Teknologi

Vejleder

Ulrich Krühne

Medvejledere

Krist V. Gernaey, Ines Pereira Rosinha Grundtvig, Francesco Cristino Falco

ECTS-point

30 - 35

Type

Kandidatspeciale

Kandidatuddannelsen i Matematisk Modellering og Computing

Vejleder

Ulrich Krühne

Medvejledere

Krist V. Gernaey, Ines Pereira Rosinha Grundtvig, Francesco Cristino Falco

ECTS-point

30 - 35

Type

Kandidatspeciale

OM DTU

DTU er et teknisk eliteuniversitet med international rækkevidde og standard. Vores mission er at udvikle og nyttiggøre naturvidenskab og teknisk videnskab til gavn for samfundet. 10.000 studerende uddanner sig her til fremtiden, og 5.700 medarbejdere har hver dag fokus på uddannelse, forskning, myndighedsrådgivning og innovation, som bidrager til øget vækst og velfærd.

Find os her

Anker Engelunds Vej 1
Bygning 101A
2800 Kgs. Lyngby


45 25 25 25

dtu@dtu.dk

CVR-nr. 30 06 09 46

Liste over EAN Numre

Job på DTU

Se alle jobs
 

loading..