Projekt

Symmetry Breaking Dynamic States and Multi-stability in Complex Neural Networks

Udbyder

Vejleder

Sted

København og omegn

Background. Brain dynamics are a product of millions of interacting units and difficult to understand. To tackle this problem we use simplified models to describe qualitative features, i.e., we use so-called coarse grained models. To capture the dynamics of large groups of densely connected neurons (neural masses). Neural masses represent nodes on a weighted graph (Figure panel (a)), and their neural activity is described by a phase θj (t). While large-scale synchronization in the brain is pathological (such as epileptic seizure), normal brain activity exhibits non-uniform synchronization patterns which keep changing in time, thus allowing the brain to maintain function and to perform computations.

Project description. It is well known that non-uniform synchronization can be exhibited in oscillator networks with non-uniform coupling strength. Such systems exhibit multi-stability, i.e. the system can be dynamically switched from one state to an other, thus lending function to a neural network. Imminent questions are therefore: what are the number of multi-stable non-uniform synchronization patterns on a given (arbitrary) weighted network? And what are minimal symmetry conditions imposed on a network for multi-stability to occur?

Possible project goals:
1. Numerical simulations of experimentally measured neural networks, probing multi-stability via MC sampling of initial conditions
2. Determine solution space / attractors for phase oscillator models and/or reduced mean-field dynamical equations
3. Comparison to more complex/realistic neural models
4. Which ones of the attractors are forced by the structure and symmetry properties of the system?
5. ...
Possible methods: Numerical simulation, network/graph theory, bifurcation theory, dimensional reduction, (concepts of group & representation theory*).






I samarbejde med

Christian Bick

Download materiale

Søg i opslag
Kontakt

Virksomhed/organisation

DTU Compute

Navn

Erik Andreas Martens

Stilling

Lektor

Mail

eama@dtu.dk

Vejleder-info

Kandidatuddannelsen i Elektroteknologi

Vejleder

Erik Andreas Martens

Type

Bachelorprojekt, Kandidatspeciale

Kandidatuddannelsen i Matematisk Modellering og Computing

Vejleder

Erik Andreas Martens

Type

Bachelorprojekt, Kandidatspeciale

Kandidatuddannelsen i Fysik og Nanoteknologi

Vejleder

Erik Andreas Martens

Type

Bachelorprojekt, Kandidatspeciale

OM DTU

DTU er et teknisk eliteuniversitet med international rækkevidde og standard. Vores mission er at udvikle og nyttiggøre naturvidenskab og teknisk videnskab til gavn for samfundet. 10.000 studerende uddanner sig her til fremtiden, og 5.700 medarbejdere har hver dag fokus på uddannelse, forskning, myndighedsrådgivning og innovation, som bidrager til øget vækst og velfærd.

Find os her

Anker Engelunds Vej 1
Bygning 101A
2800 Kgs. Lyngby


45 25 25 25

dtu@dtu.dk

CVR-nr. 30 06 09 46

Liste over EAN Numre

Job på DTU

Se alle jobs
 

loading..