Electron Traps in Photovoltaic Functional Materials




København og omegn

Semiconducting organic-inorganic metal halide perovskite are a family of novel functional materials with several appealing physicochemical properties making them a potent game-changer in the photovoltaic industry. Moreover, in addition to being promising next generation solar cells, they have enormous potential in a wide range of optoelectronic applications such as gas sensors, lighting/display devices and fast photon detectors. They also show promising optically switchable magnetic behavior for quantum computing.

One recently developed application is their use in detection of ionizing radiation based on the scintillation mechanism; here, halide perovskites offer many advantages such as high sensitivity and low-cost/simplicity of device fabrication compared to the best-in-class detectors. Noticeably, all-inorganic halide perovskite nanocrystals exhibit strong ionizing radiation absorption and intense luminescence at visible wavelengths, allowing fabrication of flexible X-ray detectors with an unprecedented detection limit as low as 13 nGyair/s. The color-tunable perovskite nanocrystal scintillators could provide a convenient visualization tool for X-ray radiography using standard digital cameras. One critical issue for radiation detection is the presence of charge trapping states (defects) that compete with the scintillation mechanism. In perovskite, such defects are not fully identified and the impact of carrier trapping and detrapping is not sufficiently understood. Further understanding of these defect states is required to fully exploit the materials excellent scintillation properties.

This project will investigate the trapping and detrapping mechanisms for the front-runner of the organic-inorganic metal halide perovskite, the methylammonium lead halide (MAPbX3, X = I, Br, Cl). The student(s) will be performing different defect characterization techniques such as radioluminescence, photoluminescence, and thermally stimulated luminescence from cryogenic up to room temperature to investigate the trapping and detrapping processes involved in the scintillation mechanism. Different perovskite single crystal ranging in size from centimeter to tens of nanometers (including nanowires) will be tested.

Learning objectives:

1) Introduction to the perovskite material and its sample preparation.

2) Operating high vacuum and cryogenic systems.

3) Acquiring luminescence data (radioluminescence, photoluminescence and thermally stimulated luminescence either in spectrally resolved or integrated mode).

4) Analysis and interpretation of the luminescence data.

5) Summarizing the investigations in a scientific report.

The project can be adapted to suit the needs for both B.Sc. and M.Sc. dissertations.

Søg i opslag


DTU Fysik


Pavao Andricevic





Bachelor i Fysik og Nanoteknologi


Pavao Andricevic


Mayank Jain


15 - 30


Afgangsprojekt, Andet, Bachelorprojekt, Fagprojekt, Kandidatspeciale, Kursusrelaterede projekter, Specialkursus


DTU er et teknisk eliteuniversitet med international rækkevidde og standard. Vores mission er at udvikle og nyttiggøre naturvidenskab og teknisk videnskab til gavn for samfundet. 10.000 studerende uddanner sig her til fremtiden, og 5.700 medarbejdere har hver dag fokus på uddannelse, forskning, myndighedsrådgivning og innovation, som bidrager til øget vækst og velfærd.

Find os her

Anker Engelunds Vej 1
Bygning 101A
2800 Kgs. Lyngby

45 25 25 25

Kontakt og besøg

CVR-nr. 30 06 09 46

Liste over EAN Numre

Job på DTU

Se alle jobs