Projekt

Modelling of L-H mode transition in magnetically confined plasmas

Udbyder

Vejleder

Sted

København og omegn

Numerical simulations of the transition from the low confinement (L-) mode to the high confinement (H-) mode in magnetically confined plasmas - as, e.g., Tokamak devices.

The confinement of plasma particles and energy in magnetically confined plasmas and thereby the performance of a fusion reactor is strongly influenced by turbulent transport. This transport is generally increasing as the input power is ramped up until a threshold value, where the edge heat flux reaches a critical value. The confinement is then abruptly improved, and the plasma enters a state of high confinement, the so-called H – mode, contrasting the low confinement state - the L-mode.

The transition from L- to H-mode is routinely observed and controlled in fusion experiments for the last three decades, but still lacks a first principles explanation. It is thus one of the high-priority topics of fusion research.

The formation of a transport barrier limiting the transport at the plasma edge, as the transition occurs, is believed to be connected with the appearance of large scale shear flows. Insight into the L-H transition dynamics has been gained from simplified models of the predator-prey type, basically describing the self-regulation of the turbulence by means of the shear flow that is fed by the turbulence. Recent simulation results using the four field plasma fluid code, HESEL, have revealed L-H transitions recovering the transport barrier formation as described by the simplified models. The HESEL model governs the edge-region dynamics of magnetically confined plasma.

The topic of this project is to apply the HESEL model to investigate the L-H transition for different heating scenarios, e.g., different ratios between electron and ion power input using plasma parameters from experiments, specifically from selected JET shots. A power built-up is expected as the system enters H-mode and the system should be studied well after the transition to observe an eventual power burst and temporary returns to L-mode confinement. Comparisons with experimental data may also be envisaged.

Forudsætninger

Knowledge of numerical solutions of coupled ordinary as well as partial differential equations.Some knowledge of continuum dynamics, plasma physics, and complex dynamics will be beneficial.

Søg i opslag
Kontakt

Virksomhed/organisation

DTU Fysik

Navn

Jens Juul Rasmussen

Stilling

Professor

Mail

jjra@fysik.dtu.dk

Vejleder-info

Kandidatuddannelsen i Fysik og Nanoteknologi

Vejleder

Jens Juul Rasmussen

Medvejledere

Anders Henry Nielsen

ECTS-point

30 - 35

Type

Bachelorprojekt, Kandidatspeciale

OM DTU

DTU er et teknisk eliteuniversitet med international rækkevidde og standard. Vores mission er at udvikle og nyttiggøre naturvidenskab og teknisk videnskab til gavn for samfundet. 10.000 studerende uddanner sig her til fremtiden, og 5.700 medarbejdere har hver dag fokus på uddannelse, forskning, myndighedsrådgivning og innovation, som bidrager til øget vækst og velfærd.

Find os her

Anker Engelunds Vej 1
Bygning 101A
2800 Kgs. Lyngby


45 25 25 25

dtu@dtu.dk

CVR-nr. 30 06 09 46

Liste over EAN Numre

Job på DTU

Se alle jobs
 

loading..