Project

Modelling and optimization of plate heat exchanger condensers for heat pumps using zeotropic mixtures

Publisher

Supervisor

Location

Greater Copenhagen area

Zeotropic mixtures constitute one possibility of optimizing the heat pump coefficient of performance by reducing the irreversibility in the heat exchangers. The exergy destruction in the evaporator and condenser due to finite temperature difference between the working fluid and the heat source or sink can be reduced by matching the mixture temperature glide with the heat source or heat sink temperature profiles. However, the use of zeotropic mixtures implies a degradation of the heat transfer coefficient during both evaporation and condensation process. Plate Heat Exchangers (PHEs) offer a suitable solution for applications with zeotropic working fluid mixtures, since it is possible to achieve high heat transfer coefficients due to the flow turbulence generated by the characteristic plate corrugation patterns.

The student project will focus on design, modelling and optimizing plate heat exchanger condensers for heat pumps using zeotropic mixtures.

The modelling framework – e.g. cycle, evaporators and other components – will be provided and the student will focus his work on extending the modelling framework in Matlab to include a detailed characterization of the condenser (1D and/or 2D depending on the scope of the analysis).

The focus can be adjusted according to the student’s interest and can be framed as a special course or a final thesis. Some potential area of research are listed below:

  • Assessing the impact of using different correlations on PHE and cycle performance
  • Combined heat exchanger – cycle optimizations with focus on both heat transfer and pressure drops in the condenser
  • Derivation of design guidelines

We look for master students with a background in thermodynamics and heat transfer. Numerical work should be carried by using Matlab, for easier integration with previous work.  A basic knowledge of Matlab programming is preferred, but not required.

If you are interested or need further information, please contact Roberta Mancini (robman@mek.dtu.dk). 

For further reading on the topic

https://www.sciencedirect.com/science/article/pii/S0360544218308466

https://www.sciencedirect.com/science/article/pii/S0360544218306522?via%3Dihub

Requirements

Thermodynamics, heat transfer

Search in postings
Contact

Company / Organization

DTU Mekanik

Name

Roberta Mancini

Position

Ph.d.-studerende

Mail

robman@mek.dtu.dk

Supervisor info

BSc in Mechanical Engineering

Supervisor

Roberta Mancini

Type

Final project, Other, BSc project, Course project, MSc thesis, Course-related projects, Special course

MSc in Sustainable Energy

Supervisor

Roberta Mancini

Type

Final project, Other, BSc project, Course project, MSc thesis, Course-related projects, Special course

Technical University of Denmark

For almost two centuries DTU, Technical University of Denmark, has been dedicated to fulfilling the vision of H.C. Ørsted – the father of electromagnetism – who founded the university in 1829 to develop and create value using the natural sciences and the technical sciences to benefit society.


Today, DTU is ranked as one of the foremost technical universities in Europe, continues to set new records in the number of publications, and persistently increases and develops our partnerships with industry, and assignments accomplished by DTU’s public sector consultancy.

Find us here

Anker Engelunds Vej 1
Bygning 101A
2800 Kgs. Lyngby

Denmark



Tlf. (+45) 45 25 25 25

CVR-nr. 30 06 09 46

All vacant positions
 

loading..